Date of Graduation


Document Type


Degree Name

Doctor of Philosophy in Engineering (PhD)

Degree Level



Industrial Engineering


Nebil Buyurgan

Committee Member

Ed Pohl

Second Committee Member

Ronald Rardin

Third Committee Member

Randall Steeb


Social sciences, Applied sciences, Complex terrain, Flight tours, Risk assessment, Surveillance plans, System allocation, Unmanned aerial vehicles


This study is concerned with finding a way to solve a surveillance system allocation problem based on the need to consider intelligent insurgency that takes place in a complex geographical environment. Although this effort can be generalized to other situations, it is particularly geared towards protecting military outposts in foreign lands. The technological assets that are assumed available include stare-devices, such as tower-cameras and aerostats, as well as manned and unmanned aerial systems. Since acquiring these assets depends on the ability to control and monitor them on the target terrain, their operations on the geo-location of interest ought to be evaluated. Such an assessment has to also consider the risks associated with the environmental advantages that are accessible to a smart adversary. Failure to consider these aspects might render the forces vulnerable to surprise attacks. The problem of this study is formulated as follows: given a complex terrain and a smart adversary, what types of surveillance systems, and how many entities of each kind, does a military outpost need to adequately monitor its surrounding environment? To answer this question, an analytical framework is developed and structured as a series of problems that are solved in a comprehensive and realistic fashion. This includes digitizing the terrain into a grid of cell objects, identifying high-risk spots, generating flight tours, and assigning the appropriate surveillance system to the right route or area. Optimization tools are employed to empower the framework in enforcing constraints--such as fuel/battery endurance, flying assets at adequate altitudes, and respecting the climbing/diving rate limits of the aerial vehicles--and optimizing certain mission objectives--e.g. revisiting critical regions in a timely manner, minimizing manning requirements, and maximizing sensor-captured image quality. The framework is embedded in a software application that supports a friendly user interface, which includes the visualization of maps, tours, and related statistics. The final product is expected to support designing surveillance plans for remote military outposts and making critical decisions in a more reliable manner.