Date of Graduation

5-2021

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Engineering (PhD)

Degree Level

Graduate

Department

Computer Science & Computer Engineering

Advisor/Mentor

Di, Jia

Committee Member

Parkerson, James P.

Second Committee Member

Wu, Jingxian

Third Committee Member

Thompson, Dale R.

Keywords

Asynchronous design; Lower power design; Magnetic RAM; Microcontroller design; MTNCL; SRAM design

Abstract

This dissertation presents an MSP430 microcontroller implementation using Multi-Threshold NULL Convention Logic (MTNCL) methodology combined with an asynchronous non-volatile magnetic random-access-memory (RAM) to achieve low leakage power and fast turn-on. This asynchronous non-volatile RAM is designed with a Spin-Transfer Torque (STT) memory device model and CMOS transistors in a 65 nm technology. A self-timed Quasi-Delay-Insensitive 1 KB STT RAM is designed with an MTNCL interface and handshaking protocol. A replica methodology is implemented to handle write operation completion detection for long state-switching delays of the STT memory device. The MTNCL MSP430 core is integrated with the STT RAM to create a fully asynchronous non-volatile microcontroller.

The MSP430 architecture, the MTNCL design methodology, and the STT RAM’s low power property, along with STT RAM’s non-volatility yield multiple advantages in the MTNCL-STT RAM system for a variety of applications. For comparison, a baseline system with the same MTNCL core combined with an asynchronous CMOS RAM is designed and tested. Schematic simulation results demonstrate that the MTNCL-CMOS RAM system presents advantages in execution time and active energy over the MTNCL-STT RAM system; however, the MTNCL-STT RAM system presents unmatched advantages such as negligible leakage power, zero overhead memory power failure handling, and fast system turn-on.

Share

COinS