Date of Graduation
5-2016
Document Type
Thesis
Degree Name
Master of Science in Computer Science (MS)
Degree Level
Graduate
Department
Computer Science & Computer Engineering
Advisor/Mentor
Yan, Tingxin
Committee Member
Gashler, Michael S.
Second Committee Member
Gauch, John M.
Keywords
Applied sciences; Logical status inference; Mobile computing; Usage statistics
Abstract
Logical statuses of mobile users, such as isBusy and isAlone, are the key enabler for a plethora of context-aware mobile applications. While on-board hardware sensors (such as motion, proximity, and location sensors) have been extensively studied for logical status inference, continuous usage typically requires formidable energy consumption, which degrades the user experience. In this thesis, we argue that smartphone usage statistics can be used for logical status inference with negligible energy cost. To validate this argument, we present a continuous inference engine that (1) intercepts multiple operating system events, in particular foreground app, notifications, screen states, and connected networks; (2) extracts informative features from OS events; and (3) efficiently
infers the logical status of mobile users. The proposed inference engine is implemented
for unmodified Android phones, and an evaluation on a four-week trial has shown promising accuracy in identifying four logical statuses of mobile users with over 87% accuracy while the average energy impact on the battery life is less than 0.5%.
Citation
Hammer, J. C. (2016). Enabling Usage Pattern-based Logical Status Inference for Mobile Phones. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/1552