Date of Graduation

8-2016

Document Type

Thesis

Degree Name

Master of Science in Electrical Engineering (MSEE)

Degree Level

Graduate

Department

Electrical Engineering

Advisor/Mentor

Yang, Jing

Committee Member

Wu, Jingxian

Second Committee Member

McCann, Roy A.

Keywords

Applied sciences; Asymptotic analysis; Channel estimation overhead; FDD; MSE; Massive MIMO; Spectral efficiency

Abstract

Massive multiple-input multiple-output (MIMO) is the concept of deploying a very large number of antennas at the base stations (BS) of cellular networks. Frequency-division duplexing (FDD) massive MIMO systems in the downlink (DL) suffer significantly from the channel estimation overhead. In this thesis, we propose a minimum mean square error (MMSE)-based channel estimation framework that exploits the spatial correlation between the antennas at the BS to reduce the latter overhead. We investigate how the number of antennas at the BS affects the channel estimation error through analytical and asymptotic analysis. In addition, we derive a lower bound on the spectral efficiency of the communication system. Close form expressions of the asymptotic MSE and the spectral efficiency lower bound are obtained. Furthermore, perfect match between theoretical and simulation results is observed, and results show the feasibility of our proposed scheme.

Share

COinS