Date of Graduation
12-2016
Document Type
Dissertation
Degree Name
Doctor of Philosophy in Physics (PhD)
Degree Level
Graduate
Department
Physics
Advisor/Mentor
Chakhalian, Jacques
Committee Member
Bellaiche, Laurent
Second Committee Member
Singh, Surendra P.
Third Committee Member
Fu, Huaxiang
Fourth Committee Member
Tian, Z. Ryan
Keywords
Pure sciences; Heterostructure engineering; Interface; Transistion metal oxides
Abstract
As the representative family of complex oxides, transition metal oxides, where the lattice,
charge, orbital and spin degrees of freedom are tightly coupled, have been at the forefront
of condensed matter physics for decades. With the advancement of state-of-the-art heteroepitaxial deposition techniques, it has been recognized that combining these oxides on the atomic scale, the interfacial region offers great opportunities to discover emergent phenomena and tune materials' functionality. However, there still lacks general guiding principles for experimentalists, following which one can design and fabricate artificial systems on demand. The main theme of this dissertation is to devise and propose some basic rules for heterostructure engineering.
Towards this goal, I first report the growth of high quality YTiO3/CaTiO3 superlattices
by pulsed laser deposition. Electrical transport measurements reveal that a novel, non-
SrTiO3 based two-dimensional electron gas system has formed at the interface. What is
more, these studies add solid evidences that interface engineering via charge modulation is
an effective approach to realizing exotic many-body phenomena.
Secondly, a new concept, denoted as \geometrical lattice engineering" is proposed with pioneering experimental efforts. Aiming at designing magnetically frustrated systems, (111)-
oriented CoCr2O4 thin films and CoCr2O4/Al2O3 heterostructures have been fabricated
for the first time. Comprehensive structural and electronic characterizations reveal that
no disorder in the cation distribution or multivalency issue is present. As a result, unique
quasi-two dimensional geometrically frustrated lattices composed of alternating kagome
and triangular lattices, are naturally established via this topological approach.
These CoCr2O4/Al2O3 heterostructures have been found to exhibit remarkably different
behaviors from the bulk compounds. Towards the two dimensional limit, the ground state
of the ultrathin superlattices transforms from the bulk-like nonlinear ferrimagnetic phase,
into an emergent collinear ferrimagnetic phase, and finally into an exotic magnetically
disordered phase with an extensively large frustration parameter, which is a hallmark of
quantum spin liquid. These findings corroborate geometrical lattice engineering has excellent
potential in achieving novel electronic, magnetic, and topological phases.
Citation
Liu, X. (2016). Artificial Quantum Many-Body States in Complex Oxide Heterostructures at Two-Dimensional Limit. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/1767