Date of Graduation

12-2009

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Space & Planetary Sciences (PhD)

Degree Level

Graduate

Department

Space & Planetary Sciences

Advisor/Mentor

Lacy, Claud H.S.

Committee Member

Sears, Derek W.

Second Committee Member

Kennefick, Julia D.

Third Committee Member

Kennefick, Daniel J.

Fourth Committee Member

Oliver, William F. III

Fifth Committee Member

Ulrich, Richard K.

Keywords

Pure sciences; Earth sciences; Asteroids; Clinopyroxenes; Meteorites; Reflectance spectra; Solar system bodies

Abstract

Asteroids provide unique insights into the origin and early history of the solar system. Since asteroids are considered to be fairly pristine, studying them provides opportunities to learn more about the primordial solar system, its materials, processes and history. Since the discovery in 1801 of the first asteroid, Ceres, during the era when everyone was searching for the "missing planet", astronomers have been trying to understand what they are, where they came from, why they exist and what they can tell us about how our solar system formed and evolved.

Within the asteroid population are a number of sub-populations, the primary division is due to the locations of the asteroids. There are the Main Belt Asteroid (MBA) population that resides between the orbits of Mars and Jupiter (1.8 - 3.5 AU) and the Near-Earth Asteroid (NEA) population whose orbits have an aphelion ≤ 1.3 AU. Within both the MBA and NEA populations are further subdivisions (taxonomic classes) based on physical properties of the asteroids such as albedo, spectral curve and probable composition. There have been a number of taxonomic classification schemes, the most current iteration splits the asteroids into three complexes (C, S, and X) that combined are comprised of twenty-six distinct taxonomic classes.

Since the lifetimes of the NEAs are short (106 - 107 yrs), it is thought that the NEA population is and continues to be populated by the MBA population through various mechanisms like resonances and thermal forces. We have conducted a statistical comparison of the two populations as a whole, by complexes and individual taxonomic classes and found significant differences as well as similarities. On the surface, it appears that the NEA population is not representative of the MBA population. There are voids and relatively small numbers in taxonomic classes that exist in the NEA when compared to the MBA population and there are some important similarities. There are, however, biases that this analysis does not address that may explain our findings.

The asteroid taxonomy classification schemas are based on visible wavelength spectra. There are ~2500 classified asteroids of which only a very small percentage have spectra in the infrared wavelength ranges. Here we demonstrate, using asteroid 1989 ML, the need for more asteroid spectra in the near-infrared wavelength range which contains much compositional information. We show that in the visible wavelengths spectra of several meteorites of very different types match the spectrum of 1989 ML.

Finally, we examine twenty-seven S and possible S Complex asteroid spectra. We find that most contain pyroxenes in the monoclinic form (clinopyroxene). Clinopyroxenes can contain calcium; however, there are some that do not. The cases of Ca-free clinopyroxenes are rare on Earth, but are readily found in the type 3 unequilibrated ordinary chondrites. Analyses of the asteroids and ordinary chondrites were conducted using the Modified Gaussian Model (MGM) and the Band Area Ratio. We also examined two terrestrial Ca-free clinopyroxenes using the MGM. From our results we conclude that the surfaces of S Complex asteroids are consistent with the type 3 unequilibrated ordinary chondrites.

Included in

Geochemistry Commons

Share

COinS