Date of Graduation

8-2014

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Microelectronics-Photonics (PhD)

Degree Level

Graduate

Department

Microelectronics-Photonics

Advisor/Mentor

Roper, D. Keith

Committee Member

Vickers, Kenneth G.

Second Committee Member

Bellaiche, Laurent

Third Committee Member

Barraza-Lopez, Salvador

Fourth Committee Member

Ulrich, Richard K.

Keywords

Microscopy; Plasmonics; Spectroscopy

Abstract

Light incident on metal nanoparticles induce localized surface oscillations of conductive electrons, called plasmons, which is a means to control and manipulate light. Excited plasmons decay as either thermal energy as absorbed phonons or electromagnetic energy as scattered photons. An additional decay pathway for plasmons can exist for gold nanoparticles situated on graphene. Excited plasmons can decay directly to the graphene as through hot electron transfer. This dissertation begins by computational analysis of plasmon resonance energy and bandwidth as a function of particle size, shape, and dielectric environment in addition to diffractive coupled in lattices creating a Fano resonance. With this knowledge, plasmon resonance was probed with incident electrons using electron energy loss spectroscopy in a transmission electron microscope. Nanoparticles were fabricated using electron beam lithography on 50 nanometer thick silicon nitride with some particles fabricated with a graphene layer between the silicon nitride and metal structure. Plasmon resonance was compared between ellipses on and off graphene to characterize hot electron transfer as a means of plasmon decay. It was observed that the presence of graphene caused plasmon energy to decrease by as much as 9.8% and bandwidth to increase by 25%. Assuming the increased bandwidth was solely from electron transfer as an additional plasmon decay route, a 20% efficiency of plasmon decay to graphene was calculated for the particular ellipses analyzed.

Share

COinS