Date of Graduation

5-2014

Document Type

Thesis

Degree Name

Master of Science in Entomology (MS)

Degree Level

Graduate

Department

Entomology

Advisor/Mentor

Lorenz, Gustav M. III

Committee Member

Slaton, Nathan A.

Second Committee Member

Hardke, Jarrod T.

Third Committee Member

Wiedenmann, Robert N.

Keywords

Insecticide; Interaction; Nitrogen; Rice; Rice Water Weevil; Seed Treatment

Abstract

Seed-applied insecticides are the standard control method used to prevent rice water weevil (Lissorhoptrus oryzophilus Kuschel) injury to rice (Oryza sativa L.) roots, and often results in greater yields than rice that receives no seed-applied insecticide. Yield increases from seed-applied insecticides often occur even when insect pressure is low and should not cause yield loss. The research objective was to evaluate the effect of urea-nitrogen rate and seed-applied insecticide on number of rice water weevil larvae, nitrogen uptake and rice grain yield. Six trials were conducted at the Pine Tree Research Station (PTRS) and the Rice Research Extension Center (RREC) to examine the response of rice plants receiving different insecticide-seed treatments and urea-nitrogen rate combinations. Insecticide-seed treatments included label rates of clothianidin, thiamethoxam, and a no-insecticide (fungicide only) control, in combination with season-total nitrogen rates of 0, 50, 100, 150, and 200 kg urea-nitrogen/ha. Rice seed that was treated with clothianidin or thiamethoxam generally had equal numbers of rice water weevil larvae, which were significantly fewer compared to rice that received no insecticide with an equivalent urea-nitrogen rate. Nitrogen uptake at panicle differentiation was not affected by insecticide-seed treatments at four of six sites and usually increased positively and linearly as urea-nitrogen rate increased. As urea-nitrogen rate increased, grain yield increased either linearly or non-linearly. Averaged across urea-nitrogen rates, both insecticide seed treatments had similar yields that were 4 to 7% greater than the grain yields of rice that received no insecticide at four of the five harvested sites.

Share

COinS