Date of Graduation
8-2017
Document Type
Thesis
Degree Name
Master of Science in Chemical Engineering (MSChE)
Degree Level
Graduate
Department
Chemical Engineering
Advisor/Mentor
Beitle, Robert R. Jr.
Committee Member
Greenlee, Lauren F.
Second Committee Member
Koeppe, Roger E. II
Third Committee Member
Bedford, Nicholas
Keywords
Fed batch fermentation; Metal binding peptide; Nanoparticle; Recombinant production
Abstract
There is a need for low-cost nanoparticle materials in the context of new technologies for catalyst development. The purpose of this work was to recombinantly produce a 45- amino acid long metal binding peptide that is useful for nanoparticle synthesis. Using splicing by overlap extension PCR, a synthetic gene containing the fusion of the metal binding peptide with Green Fluorescent Protein (GFPUV) was constructed. The metal binding peptide, fused to reporter protein GFPUV, was expressed using high cell density fermentation. Palladium nanoparticles of an average diameter of 1.18 0.45 nm were synthesized by using the crude cell extract containing the fusion protein. Nanoparticle synthesis was also done using desalted samples (removal of medium components) as well as enriched fractions from ion exchange chromatography purification. In all cases, palladium, gold and palladium-gold nanoparticles were successfully synthesized with good particle size for catalysis applications, control of diameter, and lack of other metal precipitants, respectively.
This work illustrates that metallic nanoparticles can be synthesized using the soluble cell extract containing the fusion protein without extensive purification or cleavage steps.
Citation
Tejada Vaprio, R. E. (2017). Peptide-directed Nanoparticle Synthesis With A Denovo Pd-binding Sequence Fused To A Reporter Protein. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/2393