Date of Graduation
8-2017
Document Type
Dissertation
Degree Name
Doctor of Philosophy in Crop, Soil & Environmental Sciences (PhD)
Degree Level
Graduate
Department
Crop, Soil & Environmental Sciences
Advisor/Mentor
Purcell, Larry C.
Committee Member
Ray, Jeffery D.
Second Committee Member
Mason, Richard E.
Third Committee Member
Savin, Mary C.
Fourth Committee Member
Zhang, Qingyang
Keywords
Drought; Genomic; GWAS; QTL Mapping; SNP; Soybean
Abstract
Drought stress is a major global constraint for crop production, and improving crop tolerance to drought is of critical importance. Direct selection of drought tolerance among genotypes for yield is limited because of low heritability, polygenic control, epistasis effects, and genotype by environment interactions. Crop physiology can play a major role for improving drought tolerance through the identification of traits associated with drought tolerance that can be used as indirect selection criteria in a breeding program. Carbon isotope ratio (δ13C, associated with water use efficiency), oxygen isotope ratio (δ18O, associated with transpiration), canopy temperature (CT), canopy wilting, and canopy coverage (CC) are promising physiological traits associated with improvement of drought tolerance. Genome-wide association studies (GWAS) are one of the genomic approaches to provide a high mapping resolution for complex trait variation such as those related to drought tolerance. The objectives of this research were to identify genomic regions and favorable alleles that contribute to drought-tolerant traits. A diverse panel consisting of 373 maturity group (MG) IV soybean accessions was evaluated for δ13C, δ18O, canopy wilting, canopy coverage, and canopy temperature in multiple environments. A set of 31,260 polymorphic SNPs with a minor allele frequency (MAF) ≥ 5% was used for association mapping of CT using the FarmCPU model. Association mapping identified 54 significant SNPs associated with δ13C, 47 significant SNPs associated with δ18O, 61 significant SNPs associated canopy wilting, 41 and 56 significant SNPs associated with CC for first and second measurements dates, respectively, and 52 significant SNPs associated with CT. Several genes were identified using these significant SNPs, and those genes had reported functions related to transpiration, water transport, growth, developmental, root development, response to abscisic acid stimulus, and stomatal complex morphogenesis. Favorable alleles from significant SNPs may be an important resource for pyramiding genes to improve drought tolerance and for identifying parental genotypes for use in breeding programs.
Citation
Kaler, A. (2017). Genomic and Physiological Approaches to Improve Drought Tolerance in Soybean. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/2490
Included in
Agronomy and Crop Sciences Commons, Plant Breeding and Genetics Commons, Statistics and Probability Commons