Growth and Characterization of Silicon-Germanium-Tin Semiconductors for Future Nanophotonics Devices
Date of Graduation
12-2018
Document Type
Dissertation
Degree Name
Doctor of Philosophy in Engineering (PhD)
Degree Level
Graduate
Department
Electrical Engineering
Advisor/Mentor
Naseem, Hameed A.
Committee Member
Yu, Shui-Qing "Fisher"
Second Committee Member
Ang, Simon S.
Third Committee Member
Chen, Zhong
Fourth Committee Member
Churchill, Hugh O.H.
Keywords
Group IV Optoelectronics; Growth; Material Science; Microelectronics; Photonics
Abstract
The bright future of silicon (Si) photonics has attracted research interest worldwide. The ultimate goal of this growing field is to develop a group IV based Si foundries that integrate Si-photonics with the current complementary metal–oxide–semiconductor (CMOS) on a single chip for mid-infrared optoelectronics and high speed devices. Even though group IV was used in light detection, such as photoconductors, it is still cannot compete with III-V semiconductors for light generation. This is because most of the group IV elements, such as Si and germanium (Ge), are indirect bandgap materials. Nevertheless, Ge and Si attracted industry attention because they are cheap to be used with low cost and high volume manufacturing. Thus, enhancing their light efficiency is highly desired. A key solution to improve the light efficiency of Ge is by growing tensile strained Ge-on-Si and SixGe1-x-ySny (Sn: tin) alloys. In this dissertation, Si-Ge-Sn material system was grown using chemical vapor deposition technique and further characterized by advanced optical and material techniques. Ge-on-Si was grown at low growth temperatures by using plasma enhancement in order to achieve growth conditions compatible with CMOS technology with high quality Ge layers. First, a single step Ge layer was grown at low temperatures (T 450°C). The material and optical characterization of the single step reveal low material and optical qualities. Second, a two-step Ge-on-Si was grown (T 525°C) to improve the quality. The results show low threading dislocation density on the order of 107 cm-2 with roughness values on the order of several nm. Optical characterization reveal optical quality close to a Ge buffer grown by a traditional high temperature method. In addition, bulk and quantum well SixGe1-x-ySny alloys were grown. The results indicate that lattice matched bulk SiGeSn/Ge can be grown with high optical and material qualities using low cost commercial precursors. In addition, band structure and optical analysis results from a single Ge0.865Sn0.135 quantum well with Si0.04Ge0.895Sn0.065 double barriers on a relaxed Ge0.918Sn0.08 buffer indicate a type-I band alignment with direct bandgap emission. Moreover, SiGeSn barriers improved the optical confinement as compared to GeSn barriers.
Citation
Alharthi, B. S. (2018). Growth and Characterization of Silicon-Germanium-Tin Semiconductors for Future Nanophotonics Devices. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3012