Date of Graduation
12-2018
Document Type
Thesis
Degree Name
Master of Science in Electrical Engineering (MSEE)
Degree Level
Graduate
Department
Electrical Engineering
Advisor/Mentor
Mantooth, H. Alan
Committee Member
Ang, Simon S.
Second Committee Member
Wolf, J. Ambrose
Keywords
Ceramic; LTCC; manufacturing; Shrinkage Field Mapping
Abstract
Low temperature co-fired ceramic (LTCC) has many benefits when it comes to electronic packaging due to the low dielectric loss, reliability in extreme environments, and high breakdown voltage. Though the ceramic has a lot of benefits it is not widely used due to the high cost and complexities associated with manufacturing. One of these issues with manufacturing is compensating for the shrinkage of the ceramic, this is accomplished by using an expansion factor, creating the “green” or manufactured design. This expansion factor is approximated through knowledge of the ceramic factors such as the metal loading, layers of ceramic tape, firing profile, lamination pressures, etc. While this expansion factor method has been studied and equations have been derived for compensation for the shrinkage, there is little evidence that the equations correctly compensate for the complexities of the design. Due to the lack of understanding of how different design parameters play a role in the shrinkage of the panel, this thesis will look to address the fundamental issue of measuring the shrinkage effects due to metal loading using a shrinkage characterization method called shrinkage field mapping. Due to the increased measurements needed for shrinkage field mapping, image processing is used to extract dimensions without dramatically increasing measurement time for the High-Density Electronics Center LTCC process. With the change in the shrinkage measurements, a 0.07-0.25% characteristic shrinkage difference can be measured from changing the volume of metal inside by 1.22mm3 in a DuPont 9k7 50mm x 50mm panel. These measurements were confirmed by three different fabrication experiments.
Citation
Zumbro, J. E. (2018). Measuring Characteristic Shrinkage Variability Due to Metal Loading Effects in Low Temperature Co-Fired Ceramic Using Image Processing. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3110
Included in
Ceramic Materials Commons, Engineering Mechanics Commons, Mechanics of Materials Commons