Date of Graduation
5-2012
Document Type
Thesis
Degree Name
Master of Science in Chemistry (MS)
Degree Level
Graduate
Department
Chemistry & Biochemistry
Advisor/Mentor
Stenken, Julie A.
Committee Member
Fritsch, Ingrid
Second Committee Member
Hestekin, Christa N.
Third Committee Member
Heyes, Colin D.
Fourth Committee Member
Paul, David W.
Fifth Committee Member
Tung, Chao-Hung Steve
Keywords
Applied sciences; Pure sciences; Cytokines; Heparin; Magnetic beads; Microfluidics; Polystyrene beads; Pre-concentration
Abstract
A proof-of-concept microfluidic device combined with heparin-immobilized magnetic beads was created to concentrate cytokine proteins collected from microdialysis samples. Cytokines are known to be related to several diseases such as cancer, and Parkinson's diseases, so to be able to develop more effective diseases treatments their interactions have to be well understood. Amine-functionalized polystyrene and carboxyl-functionalized magnetic microspheres of ~6.0 ìm in diameter were used to immobilize heparin. The amount of heparin immobilized on polystyrene beads was 5.82 x 10-8 ± 0.36 x 10-8 M per 1.0 x 106 beads and for magnetic beads was 0.64 x 10-8 ± 0.01 x 10-8M per 1.0 x 106 beads. The minimum initial heparin concentration needed to bind ~ 100% cytokines was 36.8 ìM based on estimations for a fixed initial concentration (1.0 nM) of cytokines. For polystyrene beads, it was found that 0.1 and 1.0 nM ratCCL2 (MCP-1) bound to immobilized heparin at levels of 94.50 and 83.67%, respectively. For heparin immobilized magnetic beads, experimental percentages of cytokine bound to heparin were 70.38 ± 1.71 % (ratCCL2, 0.57 nM) and 11.07 % (ratTNF-á, 0.09 nM). The differences between experimental and estimated percentages of cytokine bound to heparin were 28.31 and 31.56% for ratCCL2 and ratTNF-á. A microfluidic system was designed and made of polydimethylsiloxane (PDMS) with soft lithography. The dimensions were as follows: a) Inlet channel width of 0.1 mm, b) circular trapping area of 3.6 mm in diameter, and c) outlet channel width of 0.2 mm. The equivalent circuit theory was used to estimate the pressure drop for each channel at a flow rate of 1.0 ìL/min. Estimated Reynolds numbers for each channel were low (0.17, 0.01, and 0.11) in agreement with the theory. Estimated pressure drops were 112.2, 0.20, and 30.28 Pa. Using different flow rates, the infusion of magnetic microspheres into the device and their "spreading" behavior within circular channel was observed and quantified. "Spreading" behavior of magnetic microspheres on a circular channel could be controlled by changing their flow rate. Controlling the behavior of magnetic microspheres is very crucial for pre-concentration of cytokine proteins on bead-based microfluidic devices. This microfluidic device is now ready for testing of the trapping and preconcentration of cytokines in real microdialysis samples.
Citation
Espinal Cabrera, R. F. (2012). Development of a Microfluidic Device Coupled to Microdialysis Sampling for the Pre-concentration of Cytokines. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/349
Included in
Medical Biochemistry Commons, Molecular, Cellular, and Tissue Engineering Commons, Nervous System Diseases Commons