Date of Graduation

5-2020

Document Type

Thesis

Degree Name

Master of Science in Crop, Soil & Environmental Sciences (MS)

Degree Level

Graduate

Department

Crop, Soil & Environmental Sciences

Advisor/Mentor

Mason, Richard E.

Committee Member

Mozzoni, Leandro A.

Second Committee Member

Purcell, Larry C.

Third Committee Member

Wood, Lisa S.

Fourth Committee Member

Rupe, John C.

Keywords

Breeding Nurseries; Multispectral Sensors; Plot Size; Remote Sensing; Unmanned Aircrafts; Vegetative Indices

Abstract

Stripe Rust (Puccinia striiformis f. sp. tritici) is a foliar disease that significantly impacts global wheat production, and resistant cultivars provide the most efficient method of control. High-throughput phenotyping using unmanned aircraft systems (UAS) offers a potentially more efficient method for field-based phenotyping compared to visual assessment. Here we tested the ability of remote sensing to predict stripe rust severity in a diverse population of 594 soft red winter wheat lines, planted in single-rows, and evaluated them by visually rating stripe rust intensity and remotely using the dark green color index (DGCI), normalized difference vegetation index (NDVI) and blue NDVI. Significant relationships (p

In a second study, the effect of plot size (single-row, two-row and four-row) on relationship between visual and remote sensing data (DGCI and NDVI) was explored. We evaluated a panel of 13 genotypes preselected to range from 0 to 100% severity, planted in three plot sizes across two measurement days. Significant (p

Share

COinS