Date of Graduation
5-2012
Document Type
Thesis
Degree Name
Master of Science in Electrical Engineering (MSEE)
Degree Level
Graduate
Department
Electrical Engineering
Advisor/Mentor
Mantooth, H. Alan
Committee Member
Brown, Randy L.
Second Committee Member
Smith, Scott C.
Keywords
Applied sciences; Low power; Nonlinear; Power amplifiers; RF; Sensor
Abstract
The Power Amplifier (PA) is the last Radio Frequency (RF) building block in a transmitter, directly driving an antenna. The low power RF input signal of the PA is amplified to a significant power RF output signal by converting DC power into RF power. Since the PA consumes a majority of the power, efficiency plays one of the most important roles in a PA design. Designing an efficient, fully integrated RF PA that can operate at low supply voltage (1.2V), low power, and low RF frequency (433MHz) is a major challenge. The class E Power Amplifier, which is one type of switch mode PA, is preferred in such a scenario because of its higher theoretical efficiency compared to linear power amplifiers. A controllable class E RF power amplifier design implemented in 0.13 µm CMOS process is presented. The circuit was designed, simulated, laid out, fabricated, and tested. The PA will be integrated as a part of a complete wireless transceiver system using the same process.
Citation
Pan, H. (2012). Design of an RF CMOS Power Amplifier for Wireless Sensor Networks. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/357