Date of Graduation
5-2020
Document Type
Thesis
Degree Name
Master of Science in Electrical Engineering (MSEE)
Degree Level
Graduate
Department
Electrical Engineering
Advisor/Mentor
Mantooth, H. Alan
Committee Member
Dix, Jeff
Second Committee Member
Chen, Zhong
Keywords
thermal noise; noise performance; LNA; power consumption; parasitic resistances; SpectreRF
Abstract
Within wireless communication systems, low noise amplifiers are critical for the performance of receivers. They are primarily responsible for providing enough gain while adding little noise to overcome the noise of the subsequent stages. The LNA presented here is part of a battery-powered transceiver meant to measure crop nutrient data and relay the information. Therefore, power consumption and area become import considerations. To design for a specific power level, a power-constrained noise optimization method is used. The method sizes the amplifying transistor for a fixed source impedance, power dissipation, technology, and operating frequency. The chosen topology is the cascode stage with inductive source degeneration. This allows for an input impedance match without much added thermal noise. For area considerations, all inductors were made internal. The LNA was fabricated in a 130 nm SiGe BiCMOS8HP technology from GLOBALFOUNDRIES. Designing the amplifier for operation at 433 MHz produced a 12 dB gain, 4.9 dB noise figure, 6.3 mW power consumption, -5 dBm input referred 1 dB compression point, and unconditional stability.
Citation
Alvarez Arellano, P. (2020). A Power Constrained 433-MHz Low Noise Amplifier. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3598
Included in
Electrical and Electronics Commons, Power and Energy Commons, Signal Processing Commons, Systems and Communications Commons