Date of Graduation
12-2020
Document Type
Dissertation
Degree Name
Doctor of Philosophy in Microelectronics-Photonics (PhD)
Degree Level
Graduate
Department
Microelectronics-Photonics
Advisor/Mentor
Salamo, Gregory J.
Committee Member
Fu, Huaxiang
Second Committee Member
Ware, Morgan E.
Third Committee Member
Zou, Min
Fourth Committee Member
Wise, Rick L.
Keywords
InGaAs/GaAs; InGaN/GaN; Photoluminescence; Quantum Wells; Segregation; Simulation
Abstract
Recently, structures based on ultrathin quantum wells (QWs) began to play a critical role in modern devices, such as lasers, solar cells, infrared photodetectors, and light-emitting diodes. However, due to the lack of understanding of the formation mechanism of ultrathin QWs during the capping process, scientists and engineers cannot fully explore the potential of such structures. This study aims to investigate how structural parameters of ultrathin QWs affect their emission properties by conducting a systematic analysis of the optical properties of In(Ga)As/GaAs and In(Ga)N/GaN ultrathin QWs. Specifically, the analysis involved photoluminescence measurements combined with effective bandgap simulation, x-ray diffraction, and transmission electron microscopy characterization. By controlling the growth temperature, indium content depth profile modifications were achieved for the In(Ga)As/GaAs QWs, leading to substantial changes in the emission properties. The analysis was supported by the effective bandgap simulation, which allowed not only to probe the exact shape of the indium depth profile but also to predict and design the structures with the desired optical characteristics. In the case of In(Ga)N/GaN ultrathin QWs, the growth temperature change affected the total indium incorporation within the QW. Further analysis suggested that the total amount of indium is the dominant factor when dealing with optical emission from ultrathin QWs. The ultimate goal of this research was to characterize, understand, and control ultrathin QW structures in various applications.
Citation
Maidaniuk, Y. (2020). Optical Properties of Ultrathin In(Ga)As/GaAs and In(Ga)N/GaN Quantum Wells. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3870