Date of Graduation
5-2021
Document Type
Thesis
Degree Name
Master of Science in Electrical Engineering (MSEE)
Degree Level
Graduate
Department
Electrical Engineering
Advisor/Mentor
Mantooth, H. Alan
Committee Member
Chen, Zhong
Second Committee Member
Dix, Jeff
Keywords
ADC; Digital Signals; Machine Learning Algorithms; Remote Monitoring; SAR; Temperature Sensor Data; Wireless Sensor Node
Abstract
Wireless sensing networks (WSNs) collect analog information transduced into the form of a voltage or current. This data is typically converted into a digital representation of the value and transmitted wirelessly using various modulation techniques. As the available power and size is limited for wireless sensor nodes in many applications, a medium resolution Analog-to-Digital Converter (ADC) is proposed to convert a sensed voltage with moderate speeds to lower power consumption. Specifications also include a rail-to-rail input range and minimized errors associated with offset, gain, differential nonlinearity, and integral nonlinearity. To achieve these specifications, an 8-bit successive approximation register ADC is developed which has a conversion time of nine clock cycles. This ADC features a charge scaling array included to achieve minimized power consumption and area by reducing unit capacitance in the digital-to-analog converter. Furthermore, a latched comparator provides fast decisions utilizing positive feedback. The ADC was designed and simulated using Cadence Virtuoso with parasitic extraction over expected operating temperature range of 0 – 85°C. The design was fabricated using TSMC’s 65 nanometer RF GP process and tested on a printed circuit board to verify design specifications. The measured results for the device show an offset and gain error of +7 LSB and 31.1 LSB, respectively, and a DNL range of -0.9 LSB to +0.8 LSB and an INL range of approximately -4.6 LSB to +12 LSB. The INL is much improved in regard to the application of the temperature sensor. The INL for this region of interest is from -3.5 LSB to +2.8 LSB.
Citation
Suggs, M. W. (2021). An 8-Bit Analog-to-Digital Converter for Battery Operated Wireless Sensor Nodes. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4046