Date of Graduation
12-2021
Document Type
Dissertation
Degree Name
Doctor of Philosophy in Computer Science (PhD)
Degree Level
Graduate
Department
Computer Science & Computer Engineering
Advisor/Mentor
Gauch, Susan E.
Committee Member
Panda, Brajendra N.
Second Committee Member
Andrews, David L.
Third Committee Member
Cronan, Timothy P.
Keywords
demographics; diversity ranking; algorithms; bias; academia
Abstract
The goal of group formation is to build a team to accomplish a specific task. Algorithms are being developed to improve the team's effectiveness so formed and the efficiency of the group selection process. However, there is concern that team formation algorithms could be biased against minorities due to the algorithms themselves or the data on which they are trained. Hence, it is essential to build fair team formation systems that incorporate demographic information into the process of building the group. Although there has been extensive work on modeling individuals’ expertise for expert recommendation and/or team formation, there has been relatively little prior work on modeling demographics and incorporating demographics into the group formation process.
We propose a novel method to represent experts’ demographic profiles based on multidimensional demographic features. Moreover, we introduce three diversity ranking algorithms that form a group by considering demographic features along with the minimum required skills. Unlike many ranking algorithms that consider one Boolean demographic feature (e.g., gender or race), our diversity ranking algorithms consider multiple demographic features simultaneously. Finally, we introduce a fair team formation algorithm that balances each candidate's demographic information and expertise. We evaluate our proposed algorithms using real datasets based on members of a computer science program committee. The result shows that our algorithms form a program committee that is more diverse with an acceptable loss in utility.
Citation
Alqahtani, M. S. (2021). Fair and Diverse Group Formation Based on Multidimensional Features. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4383