Date of Graduation

5-2023

Document Type

Thesis

Degree Name

Master of Science in Electrical Engineering (MSEE)

Degree Level

Graduate

Department

Electrical Engineering

Advisor/Mentor

Juan Carlos Balda

Committee Member

Yue Zhao

Second Committee Member

Chris Farnell

Keywords

cuk converter, dc-dc converter, isolated bidirectional converter

Abstract

The objective of this thesis is to perform an analysis of the isolated bidirectional Ćuk dc-dc converter topology and demonstrate the advantages and operation of this configuration through simulations using MATLAB/SimulinkTM and measurements collected from a 1.5-kW prototype tested at the Engineering Research Center (ENRC) laboratory of the University of Arkansas. The idea of integrating an active-clamp snubber circuit on each side of the converter, proposed by Dr. Sudip Mazumder from the University of Illinois, Chicago, limits the additional voltage stresses on the components due to the energy from the transformer’s leakage inductance. This is studied in this thesis to achieve zero voltage switching (ZVS) turn-ON functionality of all active devices, reducing the losses and size of passive components. In addition, this work evaluates three separate control parameters that are utilized for power transfer, ZVS region, and the circulating current of the converter. These three variables are the duty cycle of S_P1, namely d_1; the duty cycle of S_S1, namely d_2; and the phase-shift ratio, by the symbol ∆_∅. The theoretical analysis is validated through simulations using MATLAB/SimulinkTM and through a 1.5-kW prototype converter. In addition to the analysis of the results, conclusions and suggestions for future work are presented to enhance the system’s quality.

Share

COinS