Date of Graduation
12-2012
Document Type
Dissertation
Degree Name
Doctor of Philosophy in Engineering (PhD)
Degree Level
Graduate
Department
Electrical Engineering
Advisor/Mentor
Wu, Jingxian
Committee Member
Di, Jia
Second Committee Member
Smith, Scott C.
Third Committee Member
Yang, Jing
Keywords
Applied sciences; Cognitive radio spectrum sensing; Energy efficient communication; Ultra low power wireless sensor network; Wireless communications
Abstract
Energy and spectrum are two precious commodities for wireless communications. How to improve the energy and spectrum efficiency has become two critical issues for the designs of wireless communication systems. This dissertation is devoted to the development of energy and spectral efficient wireless communications. The developed techniques can be applied to a wide range of wireless communication systems, such as wireless sensor network (WSN) designed for structure health monitoring (SHM), medium access control (MAC) for multi-user systems, and cooperative spectrum sensing in cognitive radio systems.
First, to improve the energy efficiency in SHM WSN, a new ultra low power (ULP) WSN is proposed to monitor the vibration properties of structures such as buildings, bridges, and the wings and bodies of aircrafts. The new scheme integrates energy harvesting, data sensing, and wireless communication into a unified process, and it achieves significant energy savings compared to existing WSNs.
Second, a cross-layer collision tolerant (CT) MAC scheme is proposed to improve energy and spectral efficiency in a multi-user system with shared medium. When two users transmit simultaneously over a shared medium, a collision happens at the receiver. Conventional MAC schemes will discard the collided signals, which result in a waste of the precious energy and spectrum resources. In our proposed CT-MAC scheme, each user transmits multiple weighted replicas of a packet at randomly selected data slots in a frame, and the indices of the selected slots are transmitted in a special collision-free position slot at the beginning of each frame. Collisions of the data slots in the MAC layer are resolved by using multiuser detection (MUD) in the PHY layer. Compared to existing schemes, the proposed CT-MAC scheme can support more simultaneous users with a higher throughput.
Third, a new cooperative spectrum sensing scheme is proposed to improve the energy and spectral efficiency of a cognitive radio network. A new Slepian-Wolf coded cooperation scheme is proposed for a cognitive radio network with two secondary users (SUs) performing cooperative spectrum sensing through a fusion center (FC). The proposed scheme can achieve significant performance gains compared to existing schemes.
Citation
Zhou, G. (2012). Energy and Spectral Efficient Wireless Communications. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/634