Date of Graduation
5-2013
Document Type
Thesis
Degree Name
Master of Science in Computer Science (MS)
Degree Level
Graduate
Department
Computer Science & Computer Engineering
Advisor/Mentor
Gauch, Susan E.
Committee Member
Thompson, Craig W.
Second Committee Member
Panda, Brajendra N.
Keywords
Applied sciences
Abstract
Online news reading has become a widely popular way to read news articles from news sources around the globe. With the enormous amount of news articles available, users are easily swamped by information of little interest to them. News recommender systems are one approach to help users find interesting articles to read. News recommender systems present the articles to individual users based on their interests rather than presenting articles in order of their occurrence. In this thesis, we present our research on developing personalized news recommendation system with the help of a popular micro-blogging service "Twitter". The news articles are ranked based on the popularity of the article that is identified with the help of the tweets from the Twitter's public timeline. Also, user profiles are built based on the user's interests and the news articles are ranked by matching the characteristics of the user profile. With the help of these two approaches, we present a hybrid news recommendation model that recommends interesting news stories to the user based on their popularity and their relevance to the user profile.
Citation
Jonnalagedda, S. (2013). Personalized News Recommender using Twitter. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/796