Date of Graduation

12-2013

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Physics (PhD)

Degree Level

Graduate

Department

Physics

Advisor/Mentor

Xiao, Min

Committee Member

Gea-Banacloche, Julio R.

Second Committee Member

Singh, Surendra P.

Third Committee Member

Vyas, Reeta

Fourth Committee Member

Arnold, Mark E.

Keywords

Pure sciences; Electromagnetically induced transparency; Multistateatoms; Optical ring cavity; Spectroscopy

Abstract

This thesis mainly focuses on the experimental investigations of electromagnetically induced transparency (EIT) related phenomena in various systems involving multilevel atoms inside an optical ring cavity. Semiclassical methods, e.g. density-matrix equations, are used through out this thesis to simulate the experimental results. First, the cavity transmission spectrum can be significantly modified when multilevel atoms are placed inside an optical ring cavity. Such coupled atom-cavity systems are well explained by the intracavity dispersion/absorption properties. Specifically, three-level lambda-type, four-level N-type and double-lambda-type atoms inside an optical ring cavity are investigated by examining their cavity transmission spectra. Second, optical multistability (OM) has been demonstrated with EIT atoms inside an optical ring cavity. Such OM has been utilized to realize a controllable optical multistate switch, which can be modeled as a triple-well system. Third, self-Kerr nonlinearities of multilevel atoms are measured in an optical ring cavity by scanning the cavity length. Fourth, bright Stokes and anti-Stokes fields are generated simultaneously in a doubly-resonant atomic optical parametric oscillator (AOPO). In addition, vacuum-induced absorption and noise correlations are studied in the AOPO system. Last, a theoretical model is proposed to realize parity-time (PT) symmetry in a four-level N-type atomic system by spatially modifying the complex refractive index in free space. Moreover, the experimental progress is made to observe discrete diffraction pattern in an optically induced lattice by interfering with plane waves in a coherent atomic medium.

Share

COinS