Document Type

Article

Publication Date

8-2021

Keywords

GST; herbicide resistance; P450; Palmer amaranth; resistance mechanism; trifluralin

Abstract

Amaranthus palmeri S. Watson (Palmer amaranth) is considered a problematic and troublesome weed species in many crops in the USA, partly because of its ability to evolve resistance to herbicides. In this study, we explored the mechanism of resistance in a trifluralin-resistant A. palmeri accession collected from Arkansas, USA. Dose-response assays using agar plates demonstrated an EC50 (effective concentration that reduces root length by 50%) of 1.02 µM trifluralin compared to 0.39 µM obtained in the susceptible accession. Thus, under these conditions, the resistant accession required 2.6 times more trifluralin to inhibit root length by 50%. Seeds in the presence or absence of the cytochrome P450-inhibitior malathion displayed a differential response with no significant influence on root length, suggesting that resistance is not P450-mediated. In addition, application of 4-chloro-7-nitrobenzofurazan (NBD-Cl), a glutathione S-transferase (GST) inhibitor, showed significant differences in root length, indicating that GSTs are most likely involved in the resistance mechanism. Sequencing of α- and β-tubulin genes revealed no single nucleotide polymorphisms (SNPs) previously described between accessions. In addition, relative gene copy number of α- and β-tubulin genes were estimated; however, both resistant and susceptible accessions displayed similar gene copy numbers. Overall, our results revealed that GST-mediated metabolism contributes to trifluralin resistance in this A. palmeri accession from Arkansas.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS