Date of Graduation
5-2020
Document Type
Thesis
Degree Name
Master of Science in Crop, Soil & Environmental Sciences (MS)
Degree Level
Graduate
Department
Crop, Soil & Environmental Sciences
Advisor/Mentor
Barber, L. Tom
Committee Member
Norsworthy, Jason K.
Second Committee Member
Gbur, Edward E. Jr.
Third Committee Member
Kelley, Jason P.
Fourth Committee Member
Roberts, Trenton L.
Keywords
Resistance; herbicides; grain sorghum; Inzen; nicosulfuron
Abstract
Grain sorghum is typically grown as a rotational crop in Arkansas because of its many benefits, one being the effective control of Palmer amaranth through the use of atrazine. However, limited options exist for postemergence (POST) control of weedy grasses within the crop. Inzen™ grain sorghum is the result of a nicosulfuron resistant weedy sorghum biotype cross-bred with a commercial line of grain sorghum. Inzen™ allows for safe use of over-the-top applications of nicosulfuron within the crop. Nicosulfuron is an acetolactate synthase (ALS)-inhibiting herbicide, which has historically been used in corn for control of weedy grasses. Experiments were conducted in 2016 and 2017 to (1) evaluate the tolerance of Inzen™ grain sorghum to various herbicides in Weed Science Society of America Group 2 ALS-inhibiting herbicides, (2) evaluate weed control programs utilizing nicosulfuron, and (3) determine the sensitivity of conventional grain sorghum to low rates of nicosulfuron and glufosinate. Results indicate Inzen™ grain sorghum was tolerant to ALS-inhibiting herbicides evaluated when applied directly to the soil prior to crop emergence (PRE). When ALS-inhibiting herbicides were applied to Inzen™ grain sorghum at the V4 growth stage, a high level of resistance was observed to all herbicides, with the exception of bispyribac-Na, which resulted in 20% visible injury and a 35% yield reduction. Additionally, weed control programs utilizing S-metolachlor preemergence and nicosulfuron + atrazine applied POST resulted in a yield increase along with acceptable control of both Palmer amaranth and johnsongrass. Finally, conventional grain sorghum appeared to be most sensitive to low rates of nicosulfuron and glufosinate at V8, flagleaf, or heading growth stages. Yield reductions of up to 96% were observed from rates of nicosulfuron equivalent to 1/10X of a labeled use rate.
Nomenclature: Inzen; atrazine; byspyribac; glufosinate; nicosulfuron; S-metolachlor; johnsongrass, Sorghum halepense L. Pers.; Palmer amaranth, Amaranthus palmeri S. Wats.; corn, Zea mays L.; grain sorghum, Sorghum bicolor L. Moench ssp. bicolor
Citation
Bowman, H. (2020). Use of Acetolactate Synthase-Inhibiting Herbicides in Inzen Grain Sorghum (Sorghum bicolor L. Moench ssp. bicolor). Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3566
Included in
Agribusiness Commons, Agricultural Economics Commons, Agricultural Science Commons, Agronomy and Crop Sciences Commons, Weed Science Commons