Document Type

Article

Publication Date

11-2021

Keywords

microgreens; peat; vermiculite; growing mats; Salmonella spp.; Listeria monocytogenes; sunflower; pea shoot

Abstract

Microgreens are an emerging salad crop with properties similar to those of sprouted seeds and lettuce. This study aimed to determine bacterial pathogen persistence during microgreen cultivation and transfer from soil-free cultivation matrix (SFCM) to mature microgreens. Salmonella enterica subsp. enterica ser. Javiana and Listeria monocytogenes were inoculated onto biostrate mats as well as peat SFCM and sampled (day 0). Next, sunflower and pea shoot seeds were planted (day 0) and grown in a controlled environment until the microgreen harvest (day 10). On day 10, SFCM and microgreens were sampled to determine the pathogen levels in the SFCM and the pathogen transfer to microgreens during production. Salmonella Javiana log CFU/g were significantly higher than L. monocytogenes in SFCM on day 10 in both planted and unplanted regions (p < 0.05). Significant differences in pathogen transfer (log CFU/g) were observed between the pea shoot and sunflower microgreens, regardless of the pathogen or SFCM type (p < 0.05). Meanwhile, pathogen transfer to the pea shoot and sunflower microgreens from the biostrate was 1.53 (95% CI: −0.75–3.81) and 5.29 (95% CI: 3.01–7.57) mean log CFU/g, respectively, and transfer from the peat was 0.00 (95% CI: −2.28–2.28) and 2.64 (95% CI: 0.36–4.92) mean log CFU/g, respectively. Results demonstrate that pathogen transfer to microgreens during production is influenced by SFCM and microgreen variety.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Food Science Commons

Share

COinS