Document Type
Article
Publication Date
6-2021
Keywords
Controlled-release Fertilizers; Nitrogen Release; Paclobutrazol
Abstract
The overall goal was to evaluate fertilizer options for greenhouse producers, with or without a plant growth regulator (PGR) application, to improve subsequent performance of container-grown annuals. Petunia (Petunia × hybrida) was the model container-grown crop in simulated production and consumer environments. The first experiment at two locations (New Hampshire and Florida) compared strategies using water-soluble fertilizer [WSF (17N–1.8P–14.1K)], controlled-release fertilizers (CRF), and slow-release fertilizers (SRF) that were either applied throughout or at the end of the 8-week production phase [point of shipping (POS)] for petunia rooted cuttings grown in 8-inch azalea containers. In the subsequent simulated “consumer” phase, container plants were irrigated with clear water (no fertilizer) for 6 weeks. Plant performance [number of flowers, SPAD chlorophyll index, dry weight, and tissue nitrogen (N)] at the end of the consumer phase was improved by top-dressing at POS with either CRF or granular organic fertilizer (both at 2.74 g/container N), or preplant incorporation of either a typical CRF at 4.12 g/container N or a CRF with an additional prill coating to delay initial release (DCT) at 2.74 g/container. There was no carry-over benefit from applying a liquid urea-chain product (1.37 or 2.74 g/container N) or top dressing with granular methylene di-urea (2.74 g/container N), or 400 mg·L–1 N (0.2 g/container N) from a liquid organic fertilizer at POS. The consumer benefit of applying 400 mg·L–1 N (0.2 g/container N) from a WSF at POS was increased by supplementing with 235 mg·L–1 magnesium (Mg) and 10 mg·L–1 iron (Fe). A second experiment in 10-inch-diameter pots evaluated the effect on consumer performance from providing 200 or 400 mg·L–1 N of WSF with the PGR paclobutrazol, at the final 1 L/pot irrigation at POS. Application of 3 mg·L–1 paclobutrazol delayed leaf yellowing and reduced plant height, width, and shoot dry weight during the consumer phase, resulting in a more compact growth habit and higher plant quality compared with plants that received no PGR, regardless of WSF treatment. Addition of supplemental 235 mg·L–1 Mg and 10 mg·L–1 Fe to the high rate of WSF and PGR did not improve consumer performance compared with other treatments that included a PGR. Overall, the first experiment demonstrated that the most effective fertilizer strategies require a CRF or SRF that will release nutrients throughout the consumer phase, and that impact of liquid fertilizer options is limited because of lower N supply per container. A single application at POS of a high rate of WSF with supplemental Mg and Fe may have short-term benefits, for example while plants are in a retail environment. Growers should consider combining a residual fertilizer with a PGR application for premium, value-added container annuals.
Citation
Ebba, J., Dickson, R. W., Fisher, P. R., Harris, C. N., Guerdat, T., & Flores, S. (2021). Fertilizer and Plant Growth Regulator Strategies for Improving Consumer Performance of Container-grown Petunia. HortTechnology, 31 (3), 304-314. https://doi.org/10.21273/HORTTECH04757-20
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.