Date of Graduation
5-2014
Document Type
Thesis
Degree Name
Bachelor of Science in Mechanical Engineering
Degree Level
Undergraduate
Department
Mechanical Engineering
Advisor/Mentor
Spearot, Douglas E.
Committee Member/Reader
Jensen, David
Committee Member/Second Reader
Kumar, Suresh
Committee Member/Third Reader
Stewart, John
Abstract
Experimental and computational techniques were used to test the permeation of water through polydimethylsiloxane (PDMS). The experimental portion consisted of creating a permeation cell in such a way that water’s only path to escape was through a PDMS membrane. Weight measurements were recorded and turned into a permeation coefficient of water through different types of PDMS. The membranes were then stretched to a certain amount to study the effect on water permeation. The computational part used Large-scale Atomic / Molecular Massively Parallel Simulator (LAMMPS) to study the diffusion coefficient of water through PDMS. The initial step was to translate coarse-grain water model parameters into LAMMPS so that water could be accurately modeled. The next process involved calculating and including the parameters for both water-PDMS interaction sites and PDMS-PDMS interaction sites. Three restart files, differing in random numbers in the code, were used to create input files for the molecular dynamics simulations. Each restart file was used to produce 3 input files at 3 different temperatures, 200K, 300K, and 400K, creating a total of 9 simulations. The 300K file was put under 3 different pressures, 50 atm, 100 atm, and 150 atm, to mimic the PDMS under stretch /strain. The simulations would provide insight into diffusion-stretch correlation. The 100 atm file was run at 200K and 400K also to test temperature dependence with strain on the PDMS.
Citation
Singh, D. (2014). Experimental and Simulation Studies of the Permeation of Water through Polydimethylsiloxane (PDMS). Mechanical Engineering Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/meeguht/40
Comments
Stewart, Gay