Date of Graduation

12-2020

Document Type

Thesis

Degree Name

Bachelor of Science in Mechanical Engineering

Degree Level

Undergraduate

Department

Mechanical Engineering

Advisor/Mentor

Zhou, Wenchao

Committee Member/Reader

Le, Ngan

Committee Member/Second Reader

Roe, Larry A.

Abstract

Deep reinforcement learning augments the reinforcement learning framework and utilizes the powerful representation of deep neural networks. Recent works have demonstrated the great achievements of deep reinforcement learning in various domains including finance,medicine, healthcare, video games, robotics and computer vision.Deep neural network was started with multi-layer perceptron (1stgeneration) and developed to deep neural networks (2ndgeneration)and it is moving forward to spiking neural networks which are knownas3rdgeneration of neural networks. Spiking neural networks aim to bridge the gap between neuroscience and machine learning, using biologically-realistic models of neurons to carry out computation. In this thesis, we first provide a comprehensive review on both spiking neural networks and deep reinforcement learning with emphasis on robotic applications. Then we will demonstrate how to develop a robotics application for context-aware scene understanding to perform sensorimotor coupling. Our system contains two modules corresponding to scene understanding and robotic navigation. The first module is implemented as a spiking neural network to carry out semantic segmentation to understand the scene in front of the robot. The second module provides a high-level navigation command to robot, which is considered as an agent and implemented by online reinforcement learning. The module was implemented with biologically plausible local learning rule that allows the agent to adopt quickly to the environment. To benchmark our system, we have tested the first module on Oxford-IIIT Pet dataset and the second module on the custom-made Gym environment. Our experimental results have proven that our system is able present the competitive results with deep neural network in segmentation task and adopts quickly to the environment.

Keywords

Spiking Neural Networks; Online Learning; Robotics

Share

COinS