Date of Graduation
5-2016
Document Type
Thesis
Degree Name
Bachelor of Science in Biomedical Engineering
Degree Level
Undergraduate
Department
Biomedical Engineering
Advisor/Mentor
Muldoon, Timothy J.
Committee Member/Reader
Kim, Michelle
Committee Member/Second Reader
Quinn, Kyle
Abstract
Every year 200,000 women in the United States are diagnosed with breast cancer. Of the cases diagnosed, 10% -15% are classified as triple negative breast cancer (TNBC) due to the absence of estrogen, progesterone, and HER-2/Neu receptors. This breast cancer sub-type is markedly more aggressive and twice as likely to develop in premenopausal women. TNBC is resistant to endocrine therapies and current targeted agents, making clinical need for the development of validated therapeutics for TNBC a pressing matter. To initiate drug development, the internalization of directly immunolabeled epidermal growth factor receptors (EGFR) in SK-BR-3 human breast adenocarcinoma cells was quantitated using live-cell multiphoton microscopy for 30 minutes over 5 minute intervals. EGFR targeting is of interest because its internalization triggers the signaling pathway that disrupts cell-cell adhesion and induces cell motility. The images acquired were processed using ImageJ and analyzed through line profiles. After measuring the full width half max at each time point of the 30-minute time series, it was determined that significant EGFR internalization did not occur.
Citation
Wiggins, S. C. (2016). Multiphoton Imaging of Labeled Breast Cancer Cells to Quantify Intra and Extracellular Receptors. Biomedical Engineering Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/bmeguht/35
Included in
Bioimaging and Biomedical Optics Commons, Medical Cell Biology Commons, Medical Molecular Biology Commons